95 research outputs found

    A Morphometric Assessment of the Intended Function of Cached Clovis Points

    Get PDF
    A number of functions have been proposed for cached Clovis points. The least complicated hypothesis is that they were intended to arm hunting weapons. It has also been argued that they were produced for use in rituals or in connection with costly signaling displays. Lastly, it has been suggested that some cached Clovis points may have been used as saws. Here we report a study in which we morphometrically compared Clovis points from caches with Clovis points recovered from kill and camp sites to test two predictions of the hypothesis that cached Clovis points were intended to arm hunting weapons: 1) cached points should be the same shape as, but generally larger than, points from kill/camp sites, and 2) cached points and points from kill/camp sites should follow the same allometric trajectory. The results of the analyses are consistent with both predictions and therefore support the hypothesis. A follow-up review of the fit between the results of the analyses and the predictions of the other hypotheses indicates that the analyses support only the hunting equipment hypothesis. We conclude from this that cached Clovis points were likely produced with the intention of using them to arm hunting weapons

    Substorm Effects in MHD and Test Particle Simulations of Magnetotail Dynamics

    Full text link
    Recent magnetohydrodynamic simulations demonstrate that a global tail instability, initiated by localized breakdown of MHD, can cause plasmoid formation and ejection as well as dipolarization and the current diversion of the substorm current wedge. The connection between the reconnection process and the current wedge signatures is provided by earthward flow from the reconnection site. Its braking and diversion in the inner magnetosphere causes dipolarization and the magnetic field distortions of the current wedge. The authors demonstrate the characteristic properties of this process and the current systems involved. The strong localized electric field associated with the flow burst and the dipolarization is also the cause of particle acceleration and energetic particle injections. Test particle simulations of orbits in the MHD fields yield results that are quite consistent with observed injection signatures

    First GIS analysis of modern stone tools used by wild chimpanzees (Pan troglodytes verus) in Bossou, Guinea, West Africa

    Get PDF
    Stone tool use by wild chimpanzees of West Africa offers a unique opportunity to explore the evolutionary roots of technology during human evolution. However, detailed analyses of chimpanzee stone artifacts are still lacking, thus precluding a comparison with the earliest archaeological record. This paper presents the first systematic study of stone tools used by wild chimpanzees to crack open nuts in Bossou (Guinea-Conakry), and applies pioneering analytical techniques to such artifacts. Automatic morphometric GIS classification enabled to create maps of use wear over the stone tools (anvils, hammers, and hammers/anvils), which were blind tested with GIS spatial analysis of damage patterns identified visually. Our analysis shows that chimpanzee stone tool use wear can be systematized and specific damage patterns discerned, allowing to discriminate between active and passive pounders in lithic assemblages. In summary, our results demonstrate the heuristic potential of combined suites of GIS techniques for the analysis of battered artifacts, and have enabled creating a referential framework of analysis in which wild chimpanzee battered tools can for the first time be directly compared to the early archaeological record.Leverhulme Trust [IN-052]; MEXT [20002001, 24000001]; JSPS-U04-PWS; FCT-Portugal [SFRH/BD/36169/2007]; Wenner-Gren Foundation for Anthropological Researc

    Unexpectedly rapid evolution of mandibular shape in hominins

    Get PDF
    Members of the hominins – namely the so-called ‘australopiths’ and the species of the genus Homo – are known to possess short and deep mandibles and relatively small incisors and canines. It is commonly assumed that this suite of traits evolved in early members of the clade in response to changing environmental conditions and increased consumption of though food items. With the emergence of Homo, the functional meaning of mandible shape variation is thought to have been weakened by technological advancements and (later) by the control over fire. In contrast to this expectation, we found that mandible shape evolution in hominins is exceptionally rapid as compared to any other primate clade, and that the direction and rate of shape change (from the ape ancestor) are no different between the australopiths and Homo. We deem several factors including the loss of honing complex, canine reduction, and the acquisition of different diets may have concurred in producing such surprisingly high evolutionary rates. This study reveals the evolution of mandibular shape in hominins has strong morpho-functional and ecological significance attached

    Controlled experiments in lithic technology and function

    Get PDF
    From the earliest manifestations of tool production, technologies have played a fundamental role in the acquisition of different resources and are representative of daily activities in the lives of ancient humans, such as hunting (stone-tipped spears) and meat processing (chipped stone tools) (Lombard 2005; McPherron et al. 2010; Lombard and Phillipson 2010; Brown et al. 2012; Wilkins et al. 2012; Sahle et al. 2013; Joordens et al. 2015; Ambrose 2001; Stout 2001). Yet many questions remain, such as how and why technological changes took place in earlier populations, and how technological traditions, innovations, and novelties enabled hominins to survive and disperse across the globe (Klein 2000; McBrearty and Brooks 2000; Henshilwood et al. 2001; Marean et al. 2007; Brown et al. 2012; Režek et al. 2018).Projekt DEALinfo:eu-repo/semantics/publishedVersio

    Shape Variation in Aterian Tanged Tools and the Origins of Projectile Technology: A Morphometric Perspective on Stone Tool Function

    Get PDF
    BACKGROUND: Recent findings suggest that the North African Middle Stone Age technocomplex known as the Aterian is both much older than previously assumed, and certainly associated with fossils exhibiting anatomically modern human morphology and behavior. The Aterian is defined by the presence of 'tanged' or 'stemmed' tools, which have been widely assumed to be among the earliest projectile weapon tips. The present study systematically investigates morphological variation in a large sample of Aterian tools to test the hypothesis that these tools were hafted and/or used as projectile weapons. METHODOLOGY/PRINCIPAL FINDINGS: Both classical morphometrics and Elliptical Fourier Analysis of tool outlines are used to show that the shape variation in the sample exhibits size-dependent patterns consistent with a reduction of the tools from the tip down, with the tang remaining intact. Additionally, the process of reduction led to increasing side-to-side asymmetries as the tools got smaller. Finally, a comparison of shape-change trajectories between Aterian tools and Late Paleolithic arrowheads from the North German site of Stellmoor reveal significant differences in terms of the amount and location of the variation. CONCLUSIONS/SIGNIFICANCE: The patterns of size-dependent shape variation strongly support the functional hypothesis of Aterian tools as hafted knives or scrapers with alternating active edges, rather than as weapon tips. Nevertheless, the same morphological patterns are interpreted as one of the earliest evidences for a hafting modification, and for the successful combination of different raw materials (haft and stone tip) into one implement, in itself an important achievement in the evolution of hominin technologies

    Structural Characteristics and Stellar Composition of Low Surface Brightness Disk Galaxies

    Full text link
    We present UBVI surface photometry of a sample of low surface brightness (LSB) disk galaxies. LSB disk galaxies are fairly well described as exponential disks with no preferred value for either scale length, central surface brightness, or rotational velocity. Indeed, the distribution of scale lengths is indistinguishable from that of high surface brightness spirals, indicating that dynamically similar galaxies (e.g., those with comparable Rv^2) exist over a large range in surface density. These LSB galaxies are strikingly blue. The complete lack of correlation between central surface brightness and color rules out any fading scenario. Similarly, the oxygen abundances inferred from HII region spectra are uncorrelated with color so the low metallicities are not the primary cause of the blue colors. While these are difficult to interpret in the absence of significant star formation, the most plausible scenario is a stellar population with a young mean age stemming from late formation and subsequent slow evolution. These properties suggest that LSB disks formed from low initial overdensities with correspondingly late collapse times.Comment: Astronomical Journal, in press 45 pages uuencoded postscript (368K) including 9 multipart figures also available by anonymous ftp @ ftp.ast.cam.ac.uk /pub/ssm/phot.uu CAP-30-210442962983742937

    The creatine kinase system and pleiotropic effects of creatine

    Get PDF
    The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans
    corecore